

Adding Low Earth Orbit Satellite Signals to GNSS

Nederlands Instituut voor Navigatie

Adding Low Earth Orbit satellite signals to GNSS

Programme

N

18.º 5

	Time	Programme	Location
	13.30-14.00	Reception	Entrance / Main Corridor
	14.00	Opening and welcome by NIN, NVR & NLR	Auditorium
	14.15	Presentations TU Delft & ESA	Auditorium
	15.10 - 15.30	break	Exposition Space
	15.30 - 16.15	Presentations GMV & Septentrio	Auditorium
	16.15 - 16.20	Presentation NSO	Auditorium
	16.20 - 16.30	Concluding session by NIN, NVR & NLR	Auditorium
2	16.30 - 17.30	Drinks	Exposition Space
		人。人。几日	

LEO-PNT: An Introduction

Heiko Engwerda, 05-02-2025

© Royal NLR 2025 – LEO PNT Workshop

Service benefits:

- Resilience to interference and cyber threats
- Improved Accuracy, availability, continuity, integrity
- Reduced dependency on GNSS

Technical benefits

- Reduced latency
- Increased Power
- Frequency diversity
- Spatial diversity and coverage
- Improved converge

Market benefits

- Development of the space economy
- Competitiveness and innovation
- Integrated services
- Shorter development cycle
- A fresh start

Medium Earth Orbit

~30 satellites for good global coverage
Up to multiple hours in view
Less station keeping
High quality clocks

GEO

Low Earth Orbit

MEO

- ✤ >200 satellites for good coverage
- Only minutes (<20) in view</p>
- Higher doppler shifts, lower latency
 Lower path loss
- Lower path loss

Lower SWaP

LEO

- Increased autonomy
- Increased drag and gravity
- Cheaper to launch (per sat.)

SoOp

Iridium Next¹

Augmentation

Beidou²

Dedicated Service

Iridium STL³

 source: insidegnss.com
 Wang, D., Jia, X. and Li, J., 2020. Simulation Analysis of LEO Satellite Navigation-Augmented Property Based on Beidou-3. In China Satellite Navigation Conference (CSNC) 2020 Proceedings: Volume III (pp. 124-133). Springer Singapore.
 Iridium STL Fact Sheet

LEO PNT Initiatives

Space Infrastructure

Europe

- ESA's FutureNAV
 - Deimos, TASI, TASF, GMV,
 OHB
- Fergani Space

USA

- Xona Space
- ✓ Iridium® STL
- TrustPoint

Japan

- JAXA
- ArkEdge Space

China

- Centispace
- Geely
- SatNet LEO
- Beidou

UAE

GNSSaS

Receiver Manufacturers

Receiver Manufacturer	LEO PNT Provider Support
NovAtel	Xona
Septentrio	Xona
StarNav	Xona, Globalstar
Syntony GNSS	Xona
STMicroelectronics	Xona
Furuno	Xona
Etherwhere	Xona
Auroxat	Xona
Qascom	Xona
Qinetiq	Xona
Parsons Corporation	Globalstar
Safran	Iridium® STL
Adtran	Iridium® STL
Viavi Solutions	Iridium® STL
NAL Research Corp.	Iridium® STL

Data source: FrontiersSI, State of the market report, Low Earth Orbit Positioning Navigation and Timing (LEO PNT), 2024

Design Trade-off:

- Signal power, distortion and penetration
- System complexity
- Compatibility
- Spectrum congestion

0	D	1	2	4	8	12	18	26	GHz	40
1	/HF	L	s	с	х	Ku	К		Ка	

↓ Low data rates
☆ Less susceptible to weather
☆ Better penetration depth

☆ High data rates and bandwidth
 ↓ Very susceptible to weather
 ↓ Low penetration depth

Image source: FrontiersSI, State of the market report, Low Earth Orbit Positioning Navigation and Timing (LEO PNT), 2024

Simultaneous Tracking and Navigation

Integrity Monitoring of Cascading Faults in LEO-PNT using a dedicated ODTS Testbed

Heiko Engwerda Aerospace Systems Royal Netherlands Aerospace Centre Amsterdam, The Netherlands heiko.engwerda@nlr.nl

Francesco Menzione Joint Research Centre European Commission Ispra, Italy francesco.menzione@ec.europa.eu

Maarten Uijt de Haag Flight Guidance and Air Transport Technical University of Berlin Berlin, Germany maarten.uijtdehaag@tu-berlin.de

stellations with Global Navigation Satellite Systems (GNSS) like Galileo requires effective integrity monitoring to mitigate cascading effects of errors. This paper investigates the potential error sources, cascading effects, and integrity monitoring strategy for augmented LEO-PNT systems. To this end, a simulation framework is developed to model the interaction between GNSS satellites, LEO satellites, and users. The results show that the proposed integrity monitor can detect and isolate the faults, ensuring the reliability and robustness of a hybrid LEO-PNT - GNSS system. The performance analysis demonstrates that the user positioning error variability and fault detection performance can be improved by the use of multiple GNSS constellations. The findings of this study provide valuable insights into the development of robust and reliable navigation solutions for LEO-PNT systems taking into account the impact on end-user

Abstract-The integration of Low Earth Orbit (LEO) con- of satellites. This increased scale introduces higher complexity in tracking orbits, providing station keeping, and calculating ephemerides. Furthermore, LEO satellites operate in an environment with more disturbances and a higher likelihood of being affected by Earth-based interference.

The integration of LEO constellations with Galileo requires a well-defined architecture that can effectively manage the increased complexity and potential error sources. One promising approach is the use of Precise Point Positioning using code and phase observations from dual-frequency receivers (P2OD) with Galileo High Accuracy Service (HAS), as demonstrated by Menzione [2]. However, this approach also introduces the risk of cascading effects of errors, as highlighted by Racelis 131 In hara a fault in the GNSS commont is absorbed by the

Thank you for your attention!

Royal NLR - Netherlands Aerospace Centre

Anthony Fokkerweg 2 1059 CM Amsterdam The Netherlands 2 +31 88 511 31 13

ĭnfo@nlr.nl ⊕ www.nlr.org

Voorsterweg 31 8316 PR Marknesse The Netherlands 2 +31 88 511 44 44

ノ | 1