


### Unintended interference from the perspective of a Network RTK provider

GNSS Satelliet positionering jamming en spoofing HSB / NIN / GIN 12 september 2024



### **Company Information 06-GPS**



06-GPS BV NL Sliedrecht Jean-Paul Henry Operational Director j.p.henry@06-gps.nl

### **Company Information 06-GPS**



- Independent, commercial provider of GNSS-data
- > 20 years of expertise in Network GNSS
- 5 employees full time, 6 employees part time
- Part of group of companies in surveying and engineering with 150 employees in total
- Thousands of registered users, from surveyours to farmers
- Benelux coverage
- Full support of GPS, GLONASS, Galileo, Beidou
- Delivery RTK (VRS) over NTRIP (internet) using RTCM 3 format
- Over 10 years of cooperation with (among others):
  - LTO Nederland
  - Bouwend Nederland

### **Quality 06-GPS**



- Certifications:
  - ISO9001:2015
  - TüV SüD
    - Static Accuracy 2cm (95%)
    - Availability (99%)
    - Competence and service
  - TüV SüD
    - Dynamic Acc. 2cm (95%)
    - Suited for Precise Farming
    - Suited for Guidance Systems







### 1. Mobile network provider

### 2. Radio amateurs

### 3. Ionospheric activity

### **Case 1: mobile network provider**





Story of GNSS interference caused by new signals in telecommunication





### Discovering radio interference

- Important to know the normal values
- Looking for the unexpected in station data especially after maintenance of datacenter
- Affected Site: Ref. Station Ede
  - Topcon NET-G5 receiver stated to show low SNR at GPS
  - Septentrio PolaRx5 receiver was still showing normal SNR at GPS

Unexpected SNR values at the receiver interface.

|                  |      | CV/III  | -         |        | 1 -      |             |            |       |    |    |
|------------------|------|---------|-----------|--------|----------|-------------|------------|-------|----|----|
| osition          | Misc | SV List | Sky Plot  | Scatte | er Posit | ion In Time | e Log      | iging |    |    |
| PRN↑             | EL   | AZ      | C/A       | L2C    | L1P      | L2P         | L5         | TC    | 55 |    |
| Ø G2             | 31+  | 310     | 40        |        | 32       | 32          |            | 63    | 0  |    |
| 🖉 G3 🛛           | 29-  | 106     | 38        | 38     | 37       | 37          | 40         | 325   | 0  |    |
| 🖉 G4             | 59-  | 66      | 39        | 41     | 36       | 37          | 42         | 91    | 0  |    |
| 🖉 G6             | 62-  | 254     | 42        | 44     | 41       | 42          | 44         | 91    | 0  |    |
| 🖉 G7 👘           | 21+  | 172     | 38        | 35     | 36       | 36          |            | 24    | 0  |    |
| 🖉 G9             | 78+  | 218     | 40        | 42     | 40       | 40          | 42         | 90    | 0  |    |
| Ø G17            | 6-   | 224     | 34        | 31     | 28       | 28          |            | 91    | 0  |    |
| Ø G19            | 14-  | 236     | 37        |        | 24       | 24          |            | 90    | 0  |    |
| Ø G22            | 9-   | 112     | 33        |        | 19       | 19          |            | 91    | 0  |    |
| <i>S</i> G26     | 9+   | 50      | 33        | 34     | 27       | 27          | 39         | 19    | 0  |    |
| SN↑              | EL   | AZ      | C/A       | L2CA   | L1P      | L2P         | L3         | TC    | 55 | FC |
| ØR1              | 67-  | 40      | 40        | 41     | 40       | 41          |            | 36    | 0  |    |
| ØR2              | 36+  | 274     | 44        | 44     | 44       | 44          |            | 86    | 0  | -  |
| 🖉 R8 🛛           | 26-  | 70      | 42        | 42     | 42       | 42          |            | 35    | 0  |    |
| 🖉 R9 🛛           | 10-  | 12      | 40        | 40     | 39       | 39          |            | 143   | 0  | -  |
| ØR10             | 33+  | 58      | 42        |        | 42       |             |            | 35    | 0  | -  |
| Ø R11            | 21+  | 122     | 41        | 40     | 41       | 40          |            | 36    | 0  |    |
| Ø R17            | 47+  |         | 41        | 43     | 41       | 43          |            | 112   | 0  |    |
| Ø R18            | 16+  |         | 39        | 40     | 39       | 40          |            | 26    | 0  | -  |
| Ø R23            | 7-   |         | 39        | 34     | 38       | 34          |            | 36    | 0  |    |
| Ø R24            | 36-  |         | 42        | 43     | 41       | 43          |            | 212   | 0  |    |
| PRN <sup>↑</sup> | EL   |         | E1        | E5a    | E5b      | E5ab        | E6         | тс    | 55 |    |
| ØE2              | 18+  |         | 36        | 39     | 38       | 39          | 39         | 64    | 0  |    |
| 🖉 E7 👘           | 79-  |         | 40        | 43     | 41       | 42          | 42         | 91    | 0  |    |
| 🖉 E8             | 26-  | 70      | 39        | 41     | 40       | 41          | 41         | 359   | 0  |    |
| © E13            | 5-   |         | 33        | 34     | 33       | 34          | 34         | 91    | 16 |    |
| © E20            | ??   |         | 38        |        |          |             |            | 48    | 29 |    |
| ØE25             | 6-   |         | 34        | 37     | 37       | 37          | 36         | 30    | 0  |    |
| ØE26             | 45-  |         | 41        | 41     | 39       | 40          | 40         | 91    | 0  |    |
| <i> 🕄</i> E30    | 11+  |         | 36        | 38     | 37       | 37          | 38         | 7     | 0  |    |
| PRN↑             | EL   | AZ      | <b>B1</b> | B1C    | B2b      | B2a         | <b>B</b> 3 | тс    | 55 | _  |
| ØC5              | 13-  |         | 35        |        | 36       |             | 38         | 64    | 0  |    |
| Ø <u>(</u> 7     | 8+   |         | 34        |        | 36       |             | 36         | 15    | 0  |    |
| Ø. C9            | 15-  |         | 35        |        | 37       |             | 37         | 90    | 0  |    |
| ØC12             | 14+  |         | 36        |        | 39       |             | 40         | 16    | 0  |    |
| ØC19             | 75+  |         | 41        |        |          |             | 23         | 143   | 0  |    |
| Ø C20            | 49-  | 86      | 40        |        |          |             | 41         | 304   | 0  |    |

### **Comparing Topcon NET-G5 at various sites**



### With interference

| 🖉 Statu  | IS NET-G |         | MAUNNO   | C20     |       |             |     |      |    | ?   |        | 🖋 Statu      | s NET |
|----------|----------|---------|----------|---------|-------|-------------|-----|------|----|-----|--------|--------------|-------|
| Position | Misc     | SV List | Sky Plot | Scatter | Posit | ion In Time | Log | ging |    |     |        | Position     | Misc  |
| PRNt     | EL       | AZ      | C/A      | L2C     | L1P   | L2P         | L5  | тс   | 55 |     |        | <b>PRN</b> ↑ | 1     |
| 🖉 G1     | 6        | - 150   | 32       | 32      | 26    | 27          | 38  | 8    | 0  |     |        | <b>G</b> 1   |       |
| 🖉 G2     | 17+      | 316     | 38       |         | 25    | 25          |     | 8    | 0  |     |        | 62 G2        | 1     |
| 🖉 G3     | 44       | - 94    | 40       | 41      | 40    | 40          | 43  | 289  | 0  |     |        | 🖉 G3         |       |
| 🖉 G4     | 74       | - 90    | 40       | 42      | 38    | 38          | 42  | 27   | 0  |     |        | 🖉 G4         |       |
| 🖉 G6     | 57+      | 290     | 12       | 42      | 40    | 41          | 43  | 128  | 0  |     |        | 🖉 G6         | 5     |
| 💭 G9     | 59+      | 216     | 39       | 41      | 39    | 39          | 42  | 85   | 0  |     |        | Ø G7         |       |
| Ø G17    | 20-      | - 234   | 39       |         | - 20  | -           |     | 26   | 0  |     |        | Ø G9         | 5     |
| Ø G19    | 28       | 248     | 39       |         | 32    | 32          |     | 26   | 0  |     |        | € G17        |       |
| Ø G22    | 23-      | 102     | 38       |         | 28    | 28          |     | 26   | 0  |     |        | <b>G</b> 19  | 3     |
| 631      | 10       | - 30    | 36       | 33      | 31    | 32          |     | 8    | 0  |     |        | Ø G22        | 1     |
| SN↑      | EL       | AZ      | C/A      | L2CA    | L1P   | L2P         | L3  | TC   | 55 | FCN |        | © G25        |       |
| © R1     | 30       | 262     | 41       | 40      | 41    | 40          |     | 27   | 6  | 1   |        | Ø G31        |       |
| Ø R7     | 46       | - 56    | 43       | 45      | 43    | 45          |     | 244  | 0  | 5   |        | SN↑          |       |
| Ø R8     | 71+      | 298     | 41       | 43      | 41    | 43          |     | 144  | 0  | 6   |        | ØR7          |       |
| Ø R9     | 25+      | 84      | 40       | 41      | 40    | 42          |     | 26   | 0  | -2  |        | © R8         | -     |
| Ø R10    | 64       | 130     | 37       |         | 37    |             |     | 3    | 0  | -7  |        | ØR9          | 2     |
| Ø R16    | 21       | - 30    | 39       | 38      | 38    | 38          |     | 24   | 0  | -1  |        | © R10        |       |
| Ø R22    | 16       | 186     | 39       | 30      | 38    | 31          |     | 287  | 0  | -3  |        | Ø R16        |       |
| Ø R23    | 58       | 262     | 41       | 42      | 41    | 41          |     | 150  | 0  | 3   |        | Ø R22        |       |
| Ø R24    | 38+      | 318     | 44       | 44      | 44    | 44          |     | 28   | 0  | 2   |        | Ø R23        |       |
| PRN↑     | EL       | AZ      | E1       | E5a     | E5b   | E5ab        | E6  | тс   | 55 |     |        | Ø R24        | 3     |
| 🔎 E4     | 54+      | 236     | 42       | 44      | 43    | 44          | 45  | 128  | 0  |     |        | PRNt         | 1     |
| ØE11     | 55+      | 282     | 40       | 43      | 41    | 42          | 43  | 26   | 0  |     | -GPS 2 | Ø E4         | 5     |
| SE12     | 44       | - 188   | 41       | 41      | 39    | 40          | 41  | 26   | 0  |     | -942 7 | <b>€</b> E11 | 5     |
| © E18    | 27       | 77      | 36       | 39      | 38    | 38          | 38  | 2    | 6  |     |        | ₿E12         |       |
| ØE19     | 64       | - 68    | 40       | 41      | 39    | 40          | 41  | 26   | 0  |     |        | ØE19         | 1     |

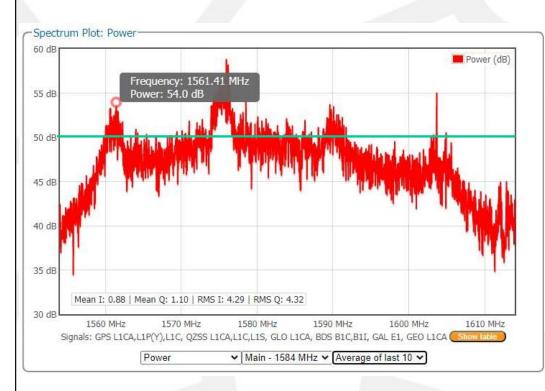
### Without interference

| Position | Misc | SV List                          | Sky Plot | Scatter | Posit | ion In Tim | e Logg | ing |    |    |
|----------|------|----------------------------------|----------|---------|-------|------------|--------|-----|----|----|
| PRN↑     | EL   | AZ                               | C/A      | L2C     | L1P   | L2P        | L5     | TC  | 55 |    |
| 🖉 G1     | 4    | 152                              | 37       | 34      | 30    | 31         | 40     | 385 | 16 |    |
| Ø G2     | 18+  | 316                              | 43       |         | 28    | 28         |        | 36  | 0  |    |
| Ø G3     | 44   | - 98                             | 48       | 46      | 50    | 50         | 52     | 293 | 0  |    |
| Ø G4     | 74   | 92                               | 48       | 53      | 45    | 44         | 57     | 189 | 0  |    |
| 🖉 G6     | 57+  | 286                              | 51       | 49      | 55    | 55         | 56     | 134 | 0  |    |
| Ø G7     | 5+   | 176                              | 37       |         | 23    | 00         |        | 3   | 0  |    |
| Ø G9     | 59+  | 211                              | 52       | 50      | 57    | 57         | 56     | 119 | 0  |    |
| Ø G17    | 19-  | 234                              |          | 38      | 29    | 20         |        | 238 | 0  |    |
| Ø G19    | 26-  | 248                              | 45       |         | 35    | 34         |        | 195 | 0  |    |
| Ø G22    | 23-  | 104                              | 43       |         | 30    | 31         |        | 346 | 0  |    |
| © G25    | 1-   | 346                              | 34       | 31      | 12    | 13         | 37     | 50  | 16 |    |
| 🖉 G31    | 10-  | 30                               | 38       | 35      | 35    | 35         |        | 182 | 0  |    |
| SNt      | EL   | AZ                               | C/A      | L2CA    | L1P   | L2P        | L3     | TC  | 55 | FC |
| © R1     | 30   | 264                              | 47       | 43      | 46    | 43         |        | 63  | 6  | 1  |
| Ø R7     | 46-  | - 58                             | 54       | 52      | 52    | 52         |        | 245 | 0  | 1  |
| Ø R8     | 72+  | 300                              | 53       | 56      | 52    | 55         |        | 152 | 0  |    |
| Ø R9     | 27+  | - 84                             | 50       | 49      | 49    | 48         |        | 61  | 0  |    |
| Ø R10    | 7+   | 130                              | 43       |         | 42    |            |        | 6   | 0  | -1 |
| Ø R16    | 22-  | - 28                             | 43       | 42      | 42    | 41         |        | 114 | 0  | -  |
| Ø R22    | 14-  | 188                              | 42       | 34      | 41    | 33         |        | 289 | 0  | -  |
| Ø R23    | 57-  | 260                              | 57       | 48      | 56    | 48         |        | 153 | 0  | 4  |
| Ø R24    | 39+  | Concernance of the second second | 54       | 50      | 53    | 49         |        | 79  | 0  | 4  |
| PRN↑     | EL   | AZ                               | E1       | E5a     | E5b   | E5ab       | E6     | TC  | 55 | _  |
| ₿ E4     | 53+  | 238                              | 48       | 53      | 54    | 54         | 52     | 140 | 0  |    |
| SE11     | 55+  | 280                              | 46       | 48      | 49    | 49         | 51     | 176 | 0  |    |
| SE12     | 42   | 190                              | 43       | 47      | 49    | 47         | 49     | 330 | 0  |    |
| SE19     | 64-  | 70                               | 45       | 49      | 49    | 49         | 50     | 269 | 0  |    |

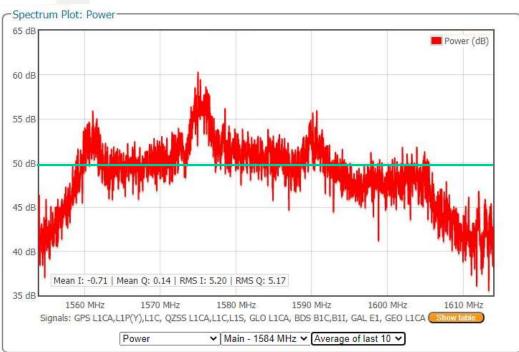
### **Analyzing interference:**



### **Theoretical steps:**


- 1. Spectrum analyses
- 2. Temporal analyses
- 3. Geographical analyses

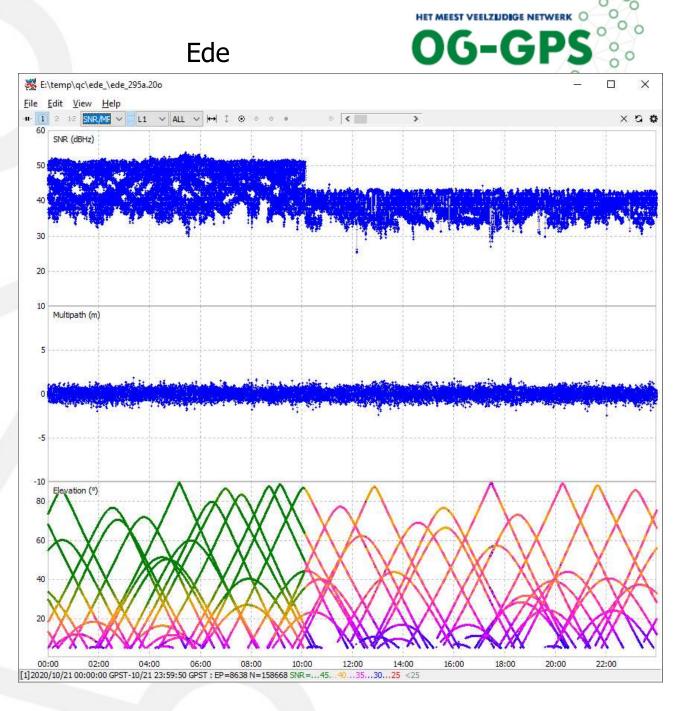
### **Practical implementation**


- 1. Spectrum plot of PolaRx5
- 2. Search in RINEX-log
- 3. Plotting RINEX-log of all stations

### **1. Spectrum analysis**

### With interference



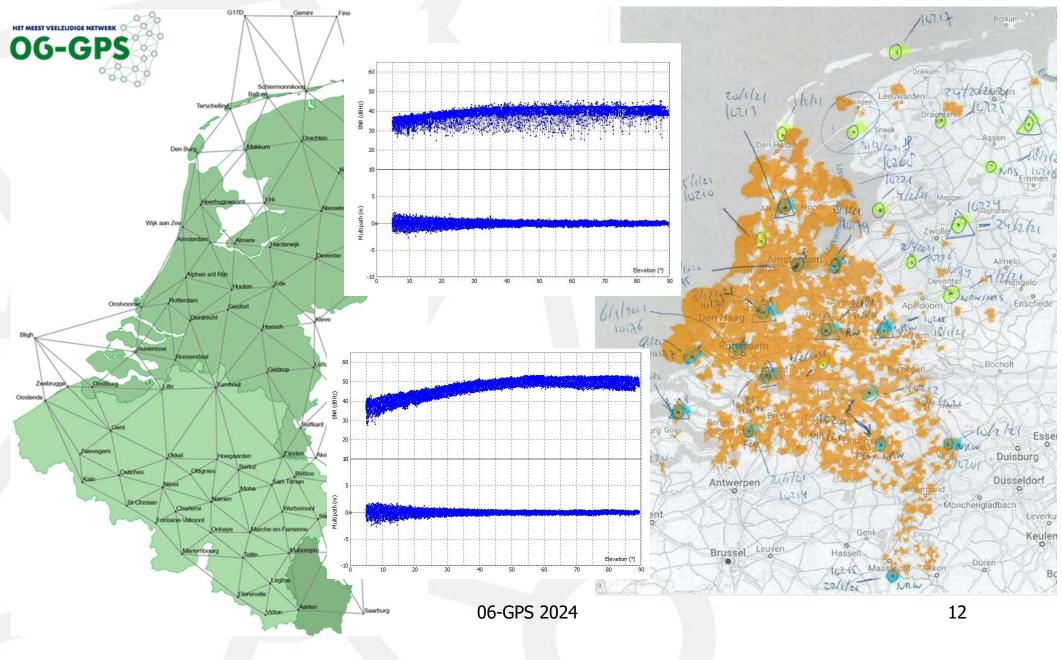

### Without interference





### 2. Temporal analyses

- Browsing the data to find the origin of the interference
- Use RTK-LIB to plot RINEX-log
- Interference started during the day as if a stationary signal was turned on
- 10 dB decrease (20%) !
- Station has 2 receivers on 1 antenna but only 1 receiver was affected.
- Only Topcon NET-G5 affected
- Septentrio PolaRX5 stayed unaffected



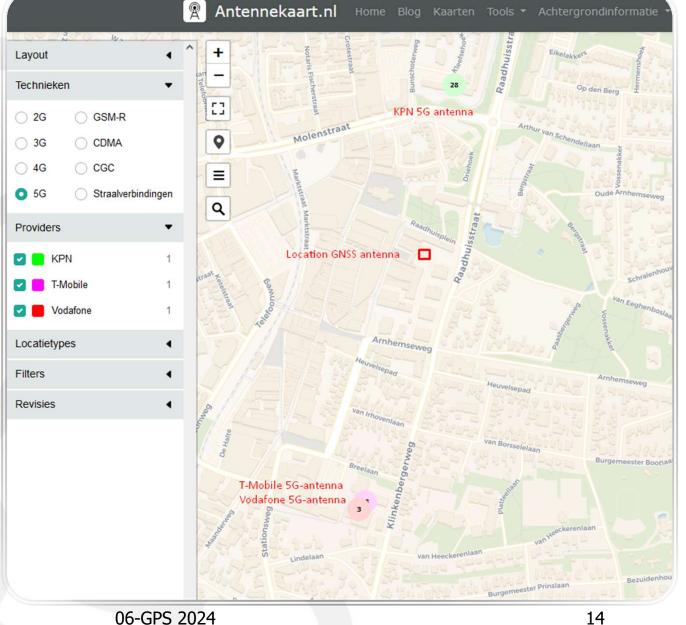

### **Geographical analyses**

A manual analysis show that KPN 5G-internet is directly correlated with the interference


HET MEEST VEELZIJDIGE NETWERK

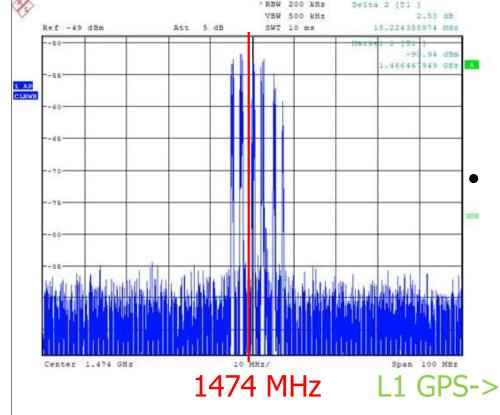
**OG-GPS** 




### **Temporal fit with the case Ede**

- Using two different sources:
  - List from KPN with maintenance date, time and location
  - Dutch antenna registry map
- Mobile network maintenance and interference had an **exact fit**
- Mobile network antenna pointed to our GNSS antenna.
- During maintenance, 5G was also implemented
- 5G: 784 MHz -> 2<sup>nd</sup> harmonic: 1.568 MHz (close to GPS L1 1.575 MHz)




## **Inconsistancies within the theory**

- Other networkproviders turned on 5G-internet without causing interference.
- Only at KPN-antennas interference was found, Vodafone and T-Mobile have almost equal 5Ginternet 700 MHz frequencies.



HET MEEST VEELZIJDIGE NETWER

OG-G



Date: 8.DEC.2020 15:49:57



## Collaborating OG-GPS to find problem

- Agentschap Telecom
- Only KPN turned 4G+ signal on
- 4G+ at 1.475 MHz
- Only downlink due to possible interference of mobile-phone GPS
- Field tests with 1.475 MHz radiator proved theory
- **KPN** 
  - Took almost 3 months to get a technical response
  - 5G didn't cause interference
  - 4G LTE+ caused interference at frequency of 1.475 MHz

Topcon

Conducted their own tests to find the issues with their equipment 06-GPS 2024

15

### Looking into possible solutions

- Two types of attenuator
  - -20dB amplifier DC blocked
  - -40dB amplifier DC blocked
- Proposed new antenna
  - CR.G5C choke ring with cavity filter



06-GPS 2024



### Attenuator -40dB with cooling Attenuator -20dB

**OG-G** 



Testing solution using temporal station GPS

0

00

HET MEEST VEELZIJDIGE NETWERK



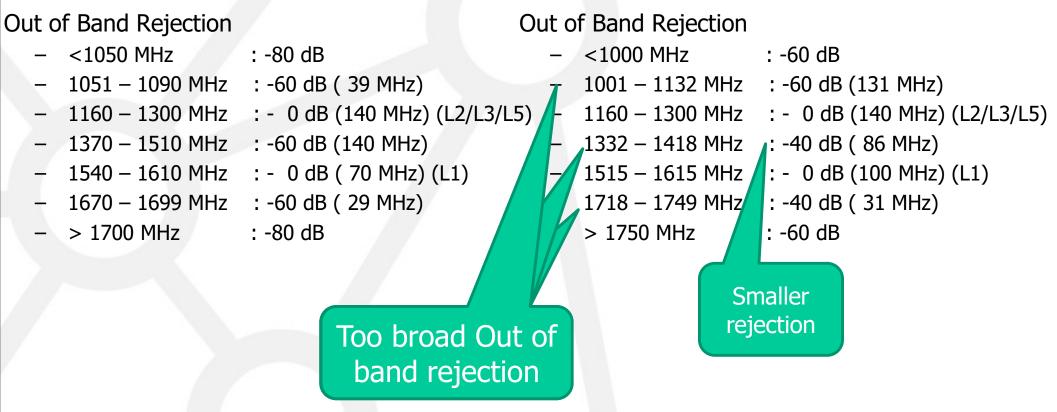


### **Test-scenarios:**

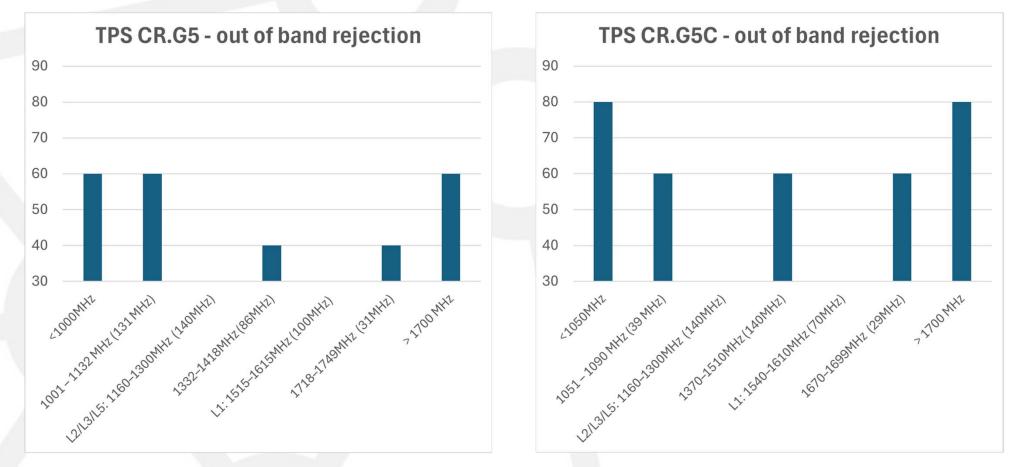
- 1. Replication of 06-GPS station Dordrecht
- 2. Replication without antenna splitter
- 3. Replication with addition of band filter compact
- 4. Replication with addition of band filter cooled
- 5. Replication with non-amplified antenna splitter
- 6. Replication with new antenna "TPSCR.G5C TPSH"



### Only the proposed antenna by Topcon could mitigate the interference!

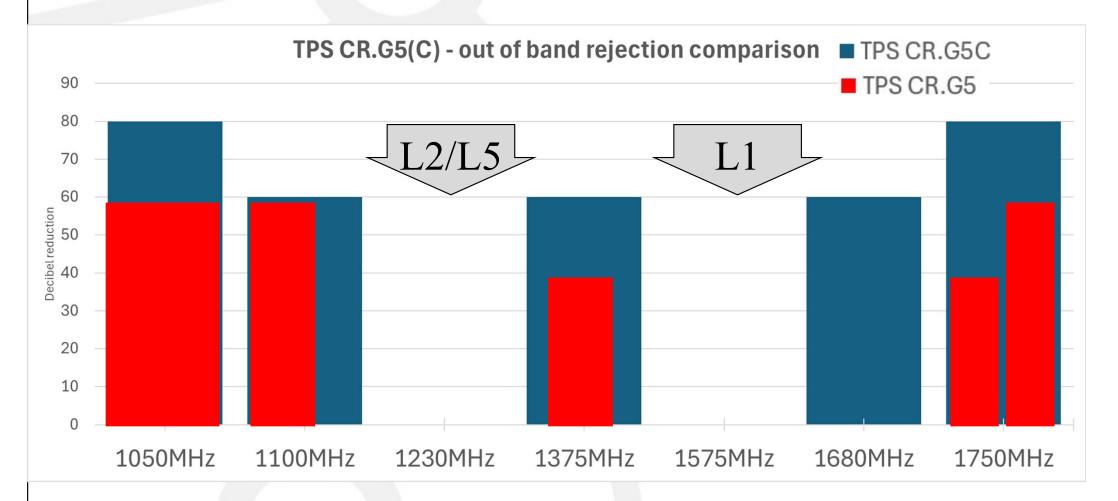

### Antenna TPSCR.G5C TPSH






### **TPS CR.G5C**

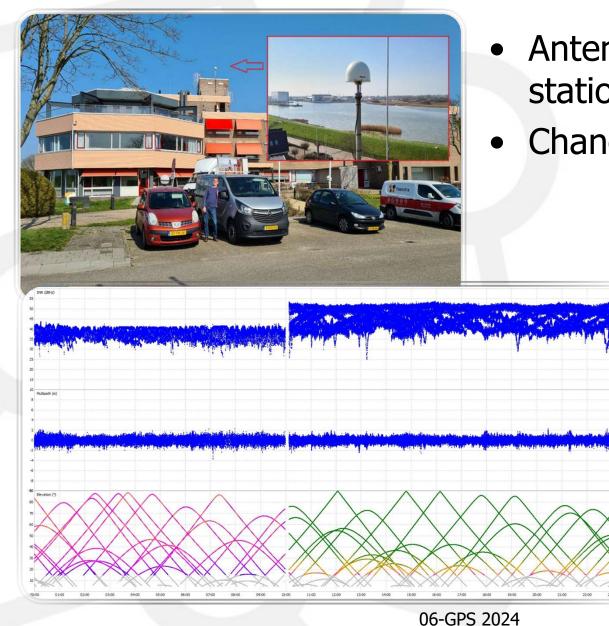
### **TPS CRG5**




# Cavity filter mitigates near band jamming



TPS CR.G5 has a too broad Out of band rejection, and a 20dB weaker rejection filter.






TPS CR.G5C has a broader Out of band rejection, and a 20dB stronger rejection filter.

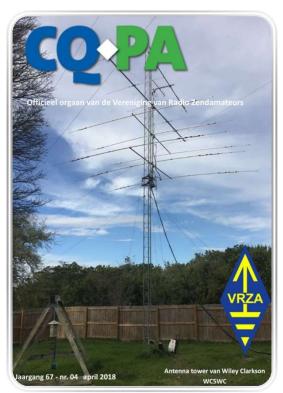
### **Implementing solution**





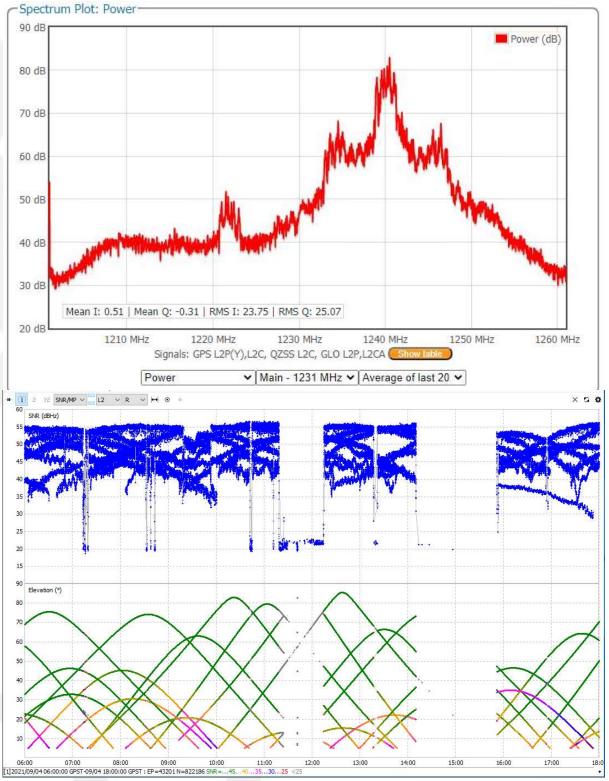
- Antenna change at 28 stations
- Change logs to partners

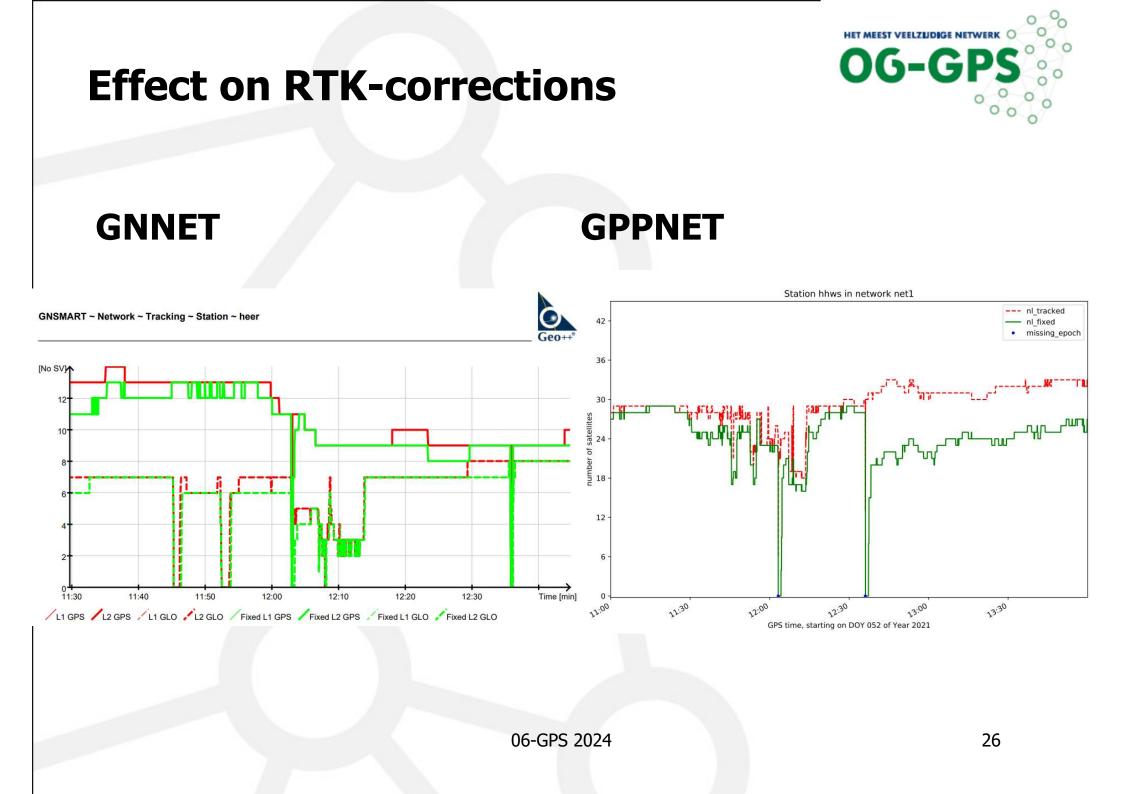






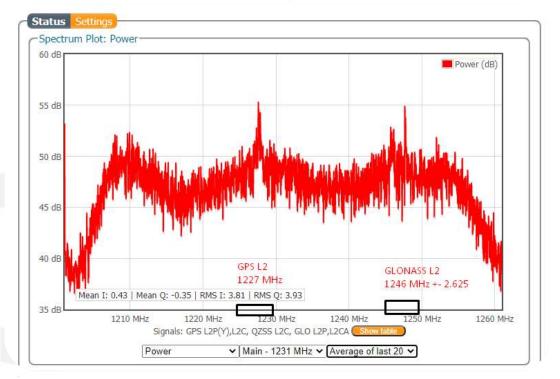

## **Case 2: Radio Amateur interference**

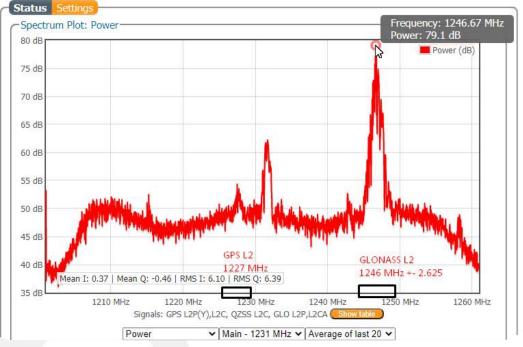

### Single station Radio Interference






### **Discovery of interference**


- Station Heerhugowaard
- Loss of fix in GNNET/GPPNET (GNSMART Geo++)
- Time depended, no exact schedule
- Only L2 of GPS & GLO affected






### **Spectrum analyses**

| Kanaal | GLO L1 MHz | GLO L2 MHz | PRN    | Signaal | Freq. MHz |
|--------|------------|------------|--------|---------|-----------|
| -7     | 1598.063   | 1242.938   | 10, 14 | GPS L1  | 1575.42   |
| -6     | 1598.625   | 1243.375   |        | GPS L2  | 1227.60   |
| -5     | 1599.188   | 1243.813   |        | GPS L5  | 1176.45   |
| -4     | 1599.750   | 1244.250   | 02,06  | GAL E1  | 1575.42   |
| -3     | 1600.313   | 1244.688   | 18, 22 | GAL E5a | 1176.45   |
| -2     | 1600.875   | 1245.125   | 09, 13 | GAL E5b | 1207.14   |
| -1     | 1601.438   | 1245.563   | 12, 16 | GAL E6  | 1278.75   |
| 0      | 1602.000   | 1246.000   | 11, 15 | BDS B1  | 1561.10   |
| 1      | 1602.563   | 1246.438   | 01, 05 | BDS B2  | 1207.14   |
| 2      | 1603.125   | 1246.875   | 20, 24 | BDS B3  | 1268.52   |
| 3      | 1603.688   | 1247.313   | 01, 23 |         |           |
| 4      | 1604.250   | 1247.750   | 17, 21 |         |           |
| 5      | 1604.813   | 1248.188   | 03, 07 |         |           |
| 6      | 1605.375   | 1248.625   | 04, 08 |         |           |
| 7      | 1605.938   | 1249.063   |        |         |           |

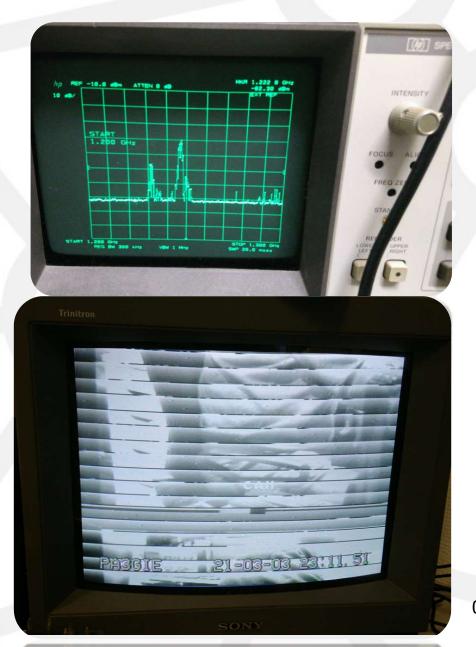




### HET MEEST VEELZIJDIGE NETWERK **Spectrum analyses with** OG-GPS **Septentrio support** 12.45:01 12:47:09 Frequency 12:49:17 12:51:25 12:53:33 12:55:41 12:57:51 12:59.5 1207.64 1214.28 1217.59 1220.91 1224.23 1227.55 1230.87 1234.19 1237.51 1240.83 1244 15 1254.1 1257 42 1204.32 1210.96 1247 47 1250 78 Time

1208.42 1212.12 1215.83 1219.54 1223.25 1226.96 1230.67 1234.37 1238.08 1241.79 1245.5 1249.21

### **Spatial analyses**



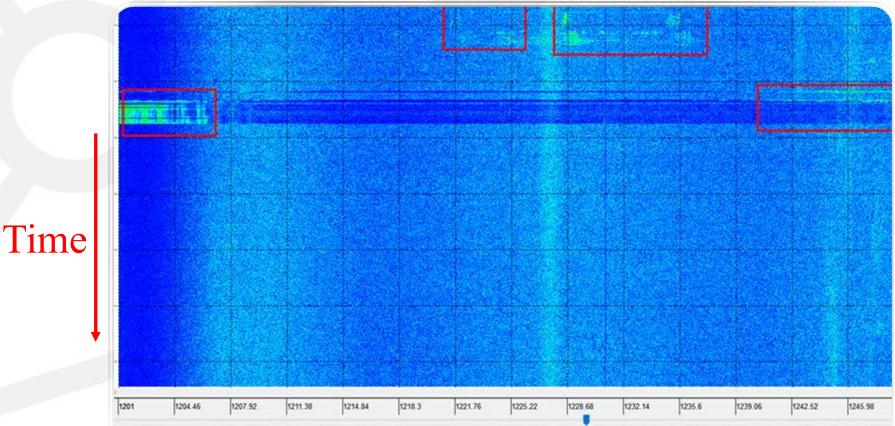

- Using antenna registry and street view to find radio amateurs
- Contact regional radio amateur association
- Email contact and plan a meeting



# Radio amateur association specialized in video broadcast






- Joining their meeting for interactive spectrum testing.
- Share screen with members Radio amateur association.
- Every user tests their frequency and signal strength
- Life feedback, amount of interference shared

### **Analysis and conclusion**



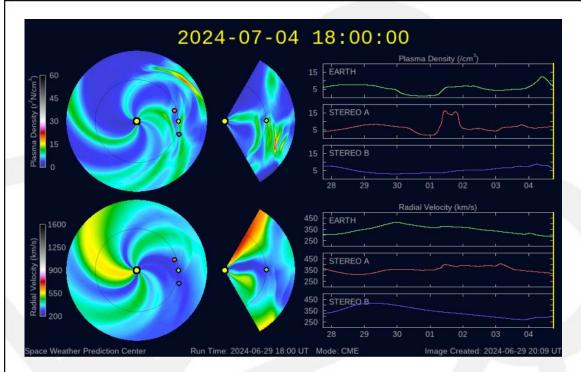
31

- During life feedback session the amateurs tested their broadcast limitation
  - 1 amateur used exactly GPS L2
  - 3 amateurs used GLONASS L2 to communicated
- Time-spectrum plot was shared afterwards





### **Interference stopped**


- Informing various radio amateur asociations
- At one radio amateur television station there was a single user sending at 1252MHz exactly over the GNSS antenna.
- No Agentschap Telecom involved
- Monitoring performance GNSSstation with RINEX logs and network-performance



### Conclusions



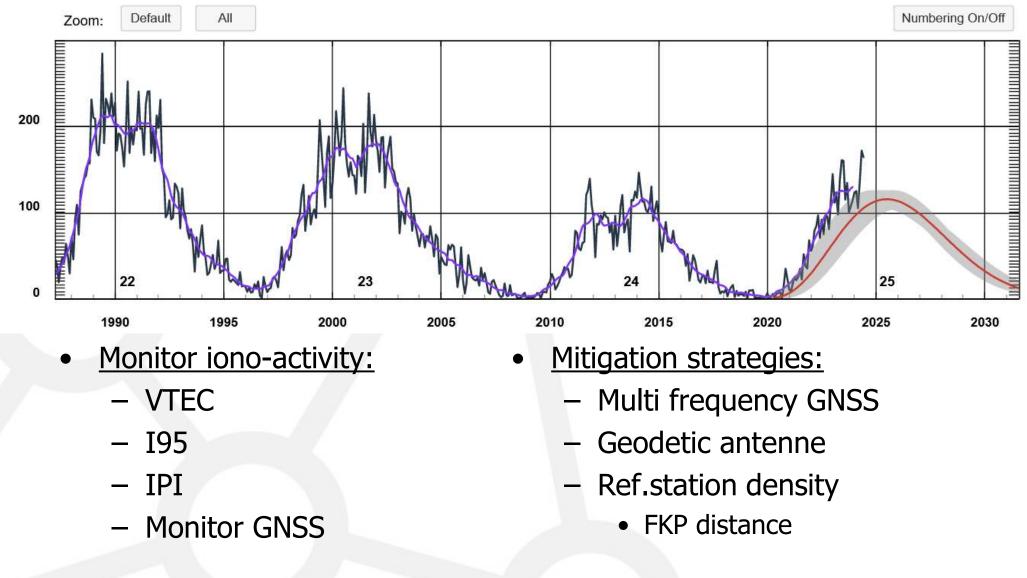
- Know normal GNSS values and monitor receiver performance
- There is always some interference, only focus on problematic interference
- Use social network while investigating problem.





## Case 3: ionospheric activity






### Solar activity cycle

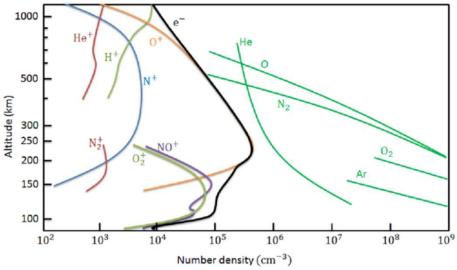


35

#### **ISES Solar Cycle Sunspot Number Progression**



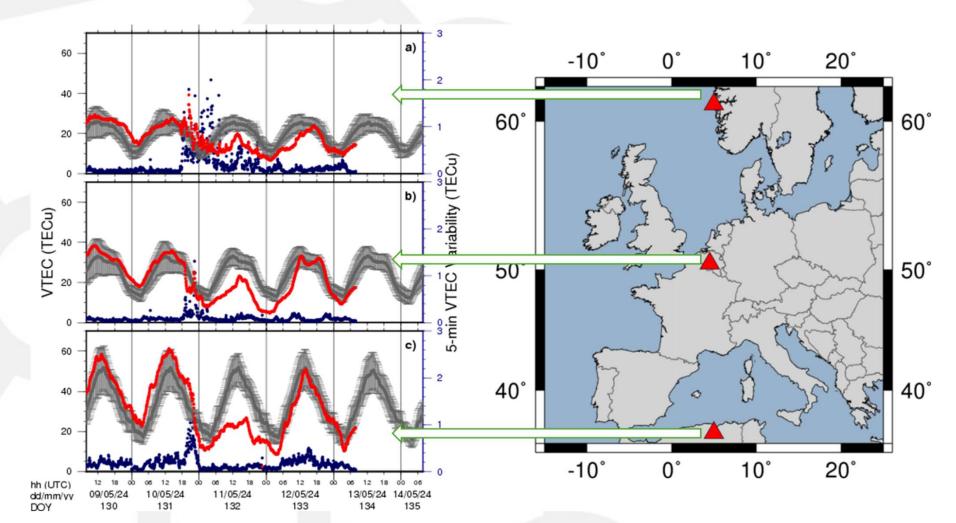
# Ionospheric storm at 10-May-2024 OG-GPS




## Royal observatorium Ukkel (Brussels)06-GPS



Optical Telescopes in Uccle






0

## Vertical Total Electron Content

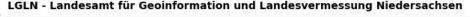


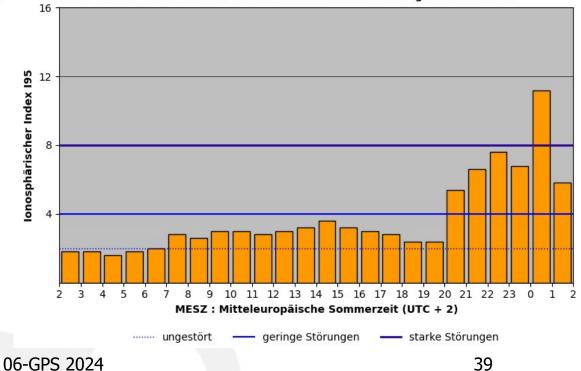


VTEC in red, VTEC variability in blue, expected VTEC in gray

### i95 monitoring




Assumption that rover and ref.station within 20 km experience equal ionospheric base level (relative satellite differences only of interest)


I95 index: 95% margin of ΔI reflects generic ionospheric disturbance:

lonosphärischer Index I95 vom 10.05.2024 (131)

berechnet mit WaSoft/WaV2







## Ionospheric storm at 10-may-2024 06-G

#### Monitor Sliedrecht

Overzicht Stations Satellieten Ionosfeer

|                                    | Noord   | Status     | Zuid       | Status     | Zuid2      | Status     |
|------------------------------------|---------|------------|------------|------------|------------|------------|
| Actieve<br>basisstations:          | 45/46   |            | 47/47      | $\bigcirc$ | 15/15      | $\bigcirc$ |
| GPS fix:                           | 9/10    | $\bigcirc$ | 9/10       |            | 9/9        |            |
| GLONASS fix:                       | 8/9     | 0          | 7/9        | $\bigcirc$ | 8/9        | 0          |
| Ionosferische<br>onregelmatigheid: | 0.034 m | $\bigcirc$ | 0.025<br>m | $\bigcirc$ | 0.026<br>m | $\bigcirc$ |
| Geometrische<br>onregelmatigheid:  | 0.005 m | 0          | 0.007<br>m | 0          | 0.007<br>m | 0          |

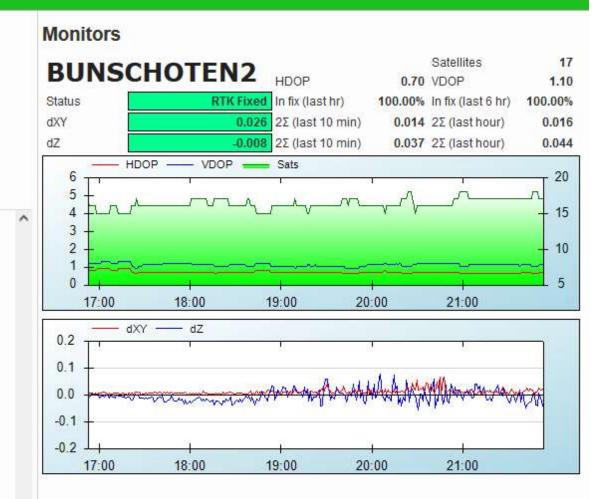




10-05-2024 23:51 lokale tijd

The measure of the interpolation quality of the state information (how well the network predicts the distance dependent errors) is displayed (in meters) separately for the ionospheric (**IPI**) and the geometric (**IPO**) part.

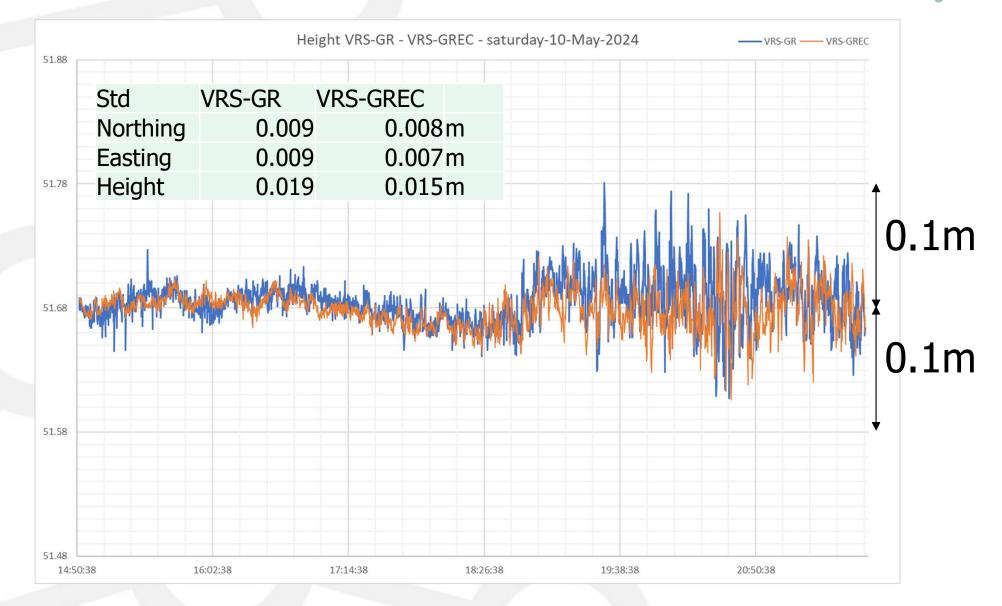
HET MEEST VEELZIJDIGE NETWER


They are computed by 2nd order FKP std. using the std from all stations and satellites with a distance dependent weighting.

A RTK network user's equipment has to account for these residual errors in the field. The ionospheric part IPI can normally be eliminated by dual frequency receivers, if the rover could solve its ambiguities. The geometric part IPO is mainly influenced by tropospheric irregularities.

# Ionospheric storm at 10-may-2024 06-G

### Status Network Status


| Local Time                    | 10-05-2024 23:53:21 |
|-------------------------------|---------------------|
| UTC Time                      | 10-05-2024 21:53:21 |
| Monitor Online                | 142-23:10:29        |
| Active Stations               | 56 (of 56)          |
| GPS Satellites Tracked        | 11                  |
| GPS Satellites Fixed          | 10                  |
| GLONASS Satellites<br>Tracked | 9                   |
| GLONASS Satellites Fixed      | 9                   |
| Atmospheric Conditions        | Moderate (IR=0.03)  |
|                               |                     |

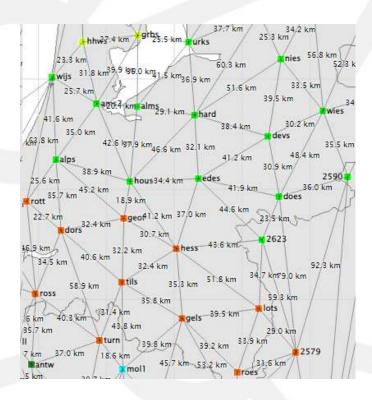


06-GPS 2024

HET MEEST VEELZIJDIGE NETWERK

### **Iono-storm GR-RTK vs. GREC-RTK**




HET MEEST VEELZIJDIGE NETWERK

**OG-G** 

### **Mitigation measures:**



- Mitigations strategies:
  - Multi freq. GNSS
  - Geodetic antenne
  - Ref.station density
    - FKP distance







## **THANK YOU FOR YOUR ATTENTION**

Jean-Paul Henry j.p.henry@06-gps.nl